Chiral 2-Alkoxy-l,3-butadienes: Synthesis and Face-selectivity in Diels-Alder Reactions

José Barluenga,* Miguel Tomás, Angel Suárez-Sobrino and Luis A. López

lnstituto Universitario de Quimica Organometalica "Enrique Moles", Unidad Asociada a1 CSIC, Universidad de Oviedo, Julian Claveria 8, 33071-0vied0, Spain

Chiral 2-alkoxy-1,3-butadienes are prepared from chiral alcohols, prop-2-ynyltriphenylphosphonium bromide and aldehydes; they undergo **[4** + 21 cycloadditions to carbo- and hetero-dienophiles with moderate to high face-selectivity.

The development of enantioselective Diels-Alder reactions are currently a major goal in selective organic synthesis.¹ In this respect, the use of chiral auxiliaries containing dienophiles^{1,2} and the development of efficient chiral catalysts^{1,3} have received much attention. Comparatively, few enantioselective Diels-Alder reactions involving dienes with an appended chiral auxiliary have been reported;^{1,4} for instance, a number of dienes with chiral substituents placed at C-1 exhibit moderate enantioselectivities.⁵ Although 2-substituted dienes appear to be more attractive (for instance, in terms of the removal of the chiral auxiliary) only a few examples are known up to date.^{6,7} Among them, 2-aminodienes have proved to be highly useful towards some dienophiles;7 however, their inherent strong enamine character makes these dienes of limited generality.⁸ Surprisingly, the chiral version of the most popular heterosubstituted dienes, 2-alkoxy-1,3-butadiene derivatives, has not been investigated. Reported herein is the synthesis of chiral, racemic and non-racemic 2-alkoxy substituted dienes as well as their $[4 + 2]$ cycloaddition to hetero- and carbo-dienophiles.

The synthesis of alkoxydienes is based on the previous procedure reported for aminodienes⁹ (Scheme 1). Accordingly, phosphonium salts **3** were first prepared by heating alcohols **l5eJO** and **prop-2-ynyltriphenylphosphonium** bromide **2** in toluene at 110 "C. Compounds **3** were not isolated but washed with diethyl ether-THF $(5:1)$ and subjected to the Wittig reaction [potassium hexamethyldisilazide (KHMDS), -60° C, THF; then RCHO]; the resulting mixture was stirred overnight $(20 °C)$ for R = alkyl; $60 °C$ for R = aryl, H) furnishing high yields of racemic and enantiomerically pure dienes $4 (R^* =$ **trans-2-phenylcyclohexyl)** and *5* (R* = trans-2-mesitylcyclohexyl) as single *E* stereoisomers $[³J_{H(3)}_{H(4)}$ 15-16 Hz] after column chromatography (Table 1). $\ddagger\ddagger$

Scheme 1 *Reagents and conditions*: i, toluene, 110 °C, 48 h; ii, KHMDS, THF, -60 °C, 4 h, iii, RCHO, THF, 20-60 °C, 14 h

Table 1 Preparation of 2-alkoxy-1,3-butadienes **4** and **5**

Diene	R	$\mathbf{R} * a$	Yieldb (%)
(\pm) -4a	2-Furyl	$(1R, 2S/1S, 2R)$ -PC	90
(\pm) -4b	Propyl	$(1R, 2S/1S, 2R)$ -PC	76
(\pm) -4c	Phenyl	$(1R, 2S/1S, 2R)$ -PC	93
$(+) - 4c^c$	Phenyl	$(1S, 2R)$ -PC	93
$(-)$ -4 c^c	Phenyl	$(1R, 2S)$ -PC	93
$(-)$ -4d c	н	$(1R, 2S)$ -PC	92
(\pm) -5	Phenyl	$(1R, 2S/1S, 2R)$ -MSC	86

*^a*PC = **trans-2-phenylcyclohexyl,** MSC = **trans-2-mesitylcyclohexyl.** *^b*Isolated yields after chromatographic purification (deactivated SiOz; diethyl ether). All the reported dienes are oils. *c* $[\alpha]_{20}^D$ in CH₂Cl₂ $(c/mg \text{ cm}^{-3})$; $(+)$ -4c +97.5 $(c = 5.9)$; $(-)$ -4c -100.7 $(c = 6.5)$; $(-)$ -4d -17.3 ($c = 6.2$).

Phenyltriazolinedione (PTAD) was selected as reactive dienophile (Scheme 2). Thus, it was slowly added at -100 °C to dienes **4a-c** (molar ratio 1 : 1) in THF and the mixture warmed to 20 "C during 12 h; removal of the solvent gave high yields of a mixture of diastereoisomeric cycloadducts **6a-d** and **7a-d** $87-91\%$; Table 2, entries 1-4]. Enantiomerically pure cycloadducts $(+)$ -6c and $(-)$ -7d were available from dienes $(+)$ -4c and $(-)$ -4c (entries 3,4), respectively, after crystallization of the resulting mixture from methanol. $\frac{48}{3}$

Then the carbodienophiles N-phenylmaleimide (NPM) and tetracyanoethylene (TCNE) were subjected to cycloaddition (Scheme *2,* Table 2, entries 5-9). Dienes **(-)-4c** and **(-)-4d** were mixed at -10 °C with NPM and ZnCl₂ (molar ratio

Scheme 2 Reagents and conditions: i, PTAD, THF, -100 °C to room temp., 12 h; ii, NPM, $ZnCl_2$, THF, $-10\degree C$ to room temp., 12 h; iii, TCNE, THF, -100 °C to room temp., 12 h

Table 2 $[4 + 2]$ Cycloadditions of dienes 4 and 5

Entry	Diene	Dienophile	Cyclo- adduct	Yield ^a (%)	$D.e.$ ^b /Major
	(\pm) -4a	PTAD	6a + 7a	87	87
2	(\pm) -4b	PTAD	$6h + 7h$	90	92
3	$(+) - 4c$	PTAD	$6c + 7c$	91	89/6c ^d
4	$(-) - 4c$	PTAD	6d + 7d	91	$89/7d^d$
5	$(-) - 4c$	NPMc	8a + 9a	82	60/9a
6	$(-) - 4d$	NPMc	8b + 9b	82	60/9b ^d
7	(\pm) -5	NPMc	$8c + 9c$	80	71
8	(\pm) -4c	TCNE	$10a + 11a$	91	90
9	(\pm) -5	TCNE	$10b + 11b$	86	89

*^a*Isolated yield after careful elution of both diastereoisomers on column chromatography $(SiO₂; hexane : ethyl acetate, 3 : 1)$. ^{*b*} The diastereoisomeric excess was determined by ¹H NMR spectroscopy by integration over the vinylic resonances. ϵ Only the *endo* isomer observed. d Mp and $[\alpha]_{20}^{D}$ in CH₂Cl₂ (c/mg cm⁻³) for pure cycloadducts: (+)-6c $171-172$ °C, + 134.2 $(c = 4.4);$ **(-)-7d** 171-172 °C, -132.0 $(c = 5.3);$ **(-)-9b** 166-167 °C, -34.9 ($c = 4.3$).

Scheme 3 *Reagents and conditions*: i, 12 mol dm⁻³ HCl, CH₂Cl₂, 20 °C, 6h

1 : 1 : 1) in THF, stirred at room temp. for 12 h and worked up with water; analysis of the crude revealed the cycloaddition to show complete endo-selectivity (entry 5) giving cycloadducts **8a,b** and **9a,b** with moderate face-selectivity (80 : 20) (entries 5, 6). The major diastereoisomer **(-)-9b** (entry 6) was obtained in enantiomerically pure form after crystallization of the diastereoisomeric mixture from methanol.# The cycloaddition of **(f)-4c** with TCNE showed great selectivity; thus, running the reaction as described above for PTAD led to a 95 : 5 mixture of **10a and 11a** (entry 8). Diene 5 derived from (\pm)-mesitylcyclohexanol allowed to slightly improve the facial selectivity in the cycloaddition with NPM **(8c** and **9c,** entry **7);** on the contrary, there were no noticiable differences in the cycloaddition of dienes **5** and **4c** $(R = Ph)$ with TCNE (as compared entries 8 and 9). f

The hydrolysis of the crude cycloadducts **6c/7c** [from **(+)-4c** and PTAD] and $8a/9a$ [from $(-)$ -4c and NPM] was accomplished without racemization with 12 mol dm⁻³ HCl (CH₂Cl₂, 20 °C, 6 h); the mixture was diluted (water), extracted and purified by flash chromatography to yield ketones **12** (80%) and 13 (90%), respectively, and unalterated chiral auxiliary ($> 85\%$ recovered) (Scheme 3). \ddagger ||**

In summary, an easy stereoselective synthesis of new chiral 2-alkoxydienes is outlined. Dienes derived from trans-phenylcyclohexanol appears to be promising reagents for Diels-Alder cycloadditions in terms of endo- and diastereo facial-selectivity, chemical yield and availability of both enantiomers.

We thank the Ministerio de Educación y Ciencia for financial support (DGICYT, PB92-1005) and for research grants to A. S.-S. and L. A. L.

Received, 13th June *1995; Corn. 5103834K*

Footnotes

t When LHMDS was employed variable amounts (10-15%) of the Z isomer were produced.

 \ddagger All compounds gave satisfactory spectroscopic (IR, ¹H and ¹³C NMR) data and HRMS data or elemental analyses. *Selected spectroscopic data* for **4c:** IH NMR (DCC13, 300 MHz) *6* 1.3-2.3 (m, 8H), 2.9 (m, lH), 4.2 (m, lH), 4.25 (d, *J* 1.8 Hz, lH), 4.3 (d,J 1.8, lH), 6.4 (d,J 15.8 Hz, lH), 6.7 (d, *J* 15.8 Hz, lH), 7.2-7.5 (m, 10H). For 6c: 13C NMR (DCC13, 75 MHz) *6* 152.31 **(s),** 150.96 (s), 148.08 **(s),** 143.23 (s), 137.03 **(s),** 130.88 (s), 128.85 (d), 128.60 (d), 128.25 (d), 127.83 (d), 127.32 (d), 126.51 (d), 125.08 (d),

93.43 (d),80.17(d),56.11 **(d),50.28(d),44.55(t),33.34(t),31.36(t),25.67** (t), 24.69 (t).

5 The stereochemical assignment of the cycloadducts **6** and **7,** as well as that of 8-11, was ascertained by an X-ray structure analysis of **7d."**

7 Mesitylcyclohexanol has been reported to be superior to phenylcyclohexanol.^{5e} Poor diastereoselectivities (d.e. < 43%) were achieved when using dienes derived from either $(-)$ -menthol or $(-)$ -8-phenylmenthol.

 \parallel We were unable to perform the hydrolysis of 10 and 11, since either they withstand the reaction conditions or formation of intractable products occurred.

The enantiomeric purity of 12 was determined by ¹H and ¹³C NMR analysis of the acetal derived from **(R,R)-butane-2,3-diol,12** while that of 13 was deduced from HPLC (Chiralcell OD-H, ethanol : hexane 3 : 1).

References

- 1 F. Fringuelli and A. Taticchi, *Dienes in the Did-Alder Reaction* Wiley, New York, 1990; J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn and H.-U. Reissig, in *Organic Synthesis Highlights,* VCH Weinheim, 1991, p. 54; W. Oppolzer, in *Comprehensive Organic Synthesis,* ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 5, p. 352.
- 2 For a recent leading reference, see: K. Maruoka, M. Akakura, **S.** Saito, T. Ooi and H. Yamamoto, *J. Am. Chem. SOC.,* 1994,116,6153.
- 3 B. H. Kagan and 0. Riant, *Chem. Rev.,* 1992, 92, 1007. For a recent reference, see: E. J. Corey, **S.** Sarshar and D.-H. Lee, *J. Am. Chem.* Soc., 1994, 116, 12089.
- 4 E. Winterfeldt, *Chem. Rev.,* 1993, 93, 827.
- *5* For heteroatom substituted dienes, see: *(a)* B. M. Trost, D. O'Krongly and **J.** L. Belletire, *J. Am. Chem.* Soc., 1980, 102,7595; *(b)* R. Tripathy, P. J. Carrol and E. R. Thornton, *J. Am. Chem. Soc.*, 1991, 113, 7630; *(c)* C. Siege1 and E. R. Thomton, *Tetrahedron Asymmetry,* 1991, 2, 1413; *(6)* R. F. Lowe andR. **J.** Stoodley, *Tetrahedron Lett.,* 1994,35,6351; *(e)* R. Thiem, K. Rotscheidt and E. Breitmaier, Synthesis, 1989, 836; (f) E. Arce, M. C. Carreiio, M. B. Cid and **J.** L. Garcia Ruano, *J. Org. Chem.,* 1994, 59, 3421; *(g)* R. F. Menezes, C. A. Zezza, **J.** Sheu and M. B. Smith, *Tetrahedron Lett.*, 1989, 30, 3295. For carbon substituted dienes, see: (h) R. Tripathy, R. W. Franck and K. D. Onan, *J. Am. Chem. Soc.*, 1988,110,3257; *(i)* J. E. Kemgan, P. G. McDougal and D. VanDerveer, *Tetrahedron Lett.,* 1993, 34, *8055.*
- 6 For heteroatom substituted dienes, see: **S.** N. Suryaawanshi, T. **S.** Dhami and D. **S.** Bhakuni, *Tetrahedron Lett.,* 1991, 32, 1519; H. Adams, D. Neville Jones, M. C. Aversa, P. Bonaccorsi and P. Giannetto, *Tetrahedron Lett.,* 1993, **34,** 6481. For carbon substituted dienes, see: P. **A.** Brown, R. V. Bonnert, P. R. Jenkins, N. J. Lawrence and M. R. Selim, *J. Chem.* Soc., *Perkin Trans. 1,* 1991, 1893; *S.* Hatakeyama, K. Sugawara and **S.** Takano, *J. Chem.* SOC., *Chem. Commun.,* 1992,953; R. Bloch and N. Chaptal-Gradoz, *J. Org. Chem.,* 1994, 59, 4162.
- 7 D. Enders, 0. Meyer and G. Raabe, *Synthesis,* 1992, 1242; D. Enders, 0. Meyer, G. Raabe and **J.** Rundink, *Synthesis,* 1993,66; J. Barluenga, F. Aznar, C. Valdés, A. Martín, S. García-Granda and E. Martín, *J. Am. Chem.* Soc., 1993, 115,4403.
- 8 For an example, see: J. Barluenga, F. Aznar, M. P. Cabal and C. Valdés, *J. Chem.* Soc., *Perkin Trans 1,* 1990, 633.
- 9 J. Barluenga, I. Merino and F. Palacios, *Tetrahedron Lett.,* 1990, 31, 6713.
- 10 A. Schwartz, P. Madan, **J.** K. Whitesell and R. M. Lawrence, *Org. Synth.,* 1990, 69, 1.
- 11 **S.** Garcia-Granda and R. Santiago, unpublished results.
- 12 D. Parker, *Chem. Rev.,* 1991, 91, 1441; T. Tsunoda, M. **Suzuki** and R. Noyori, *Tetrahedron Lett.,* 1980, 21, 1357.